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We have applied the parameter-free collective modes approach to investigate the collective excitation spec-
tra of a He g5 Neg 35 gas mixture at 39.3 K. The static and dynamic correlation functions were calculated
directly in molecular dynamics simulations of an ensemble of 864 particles which interact via Aziz potentials.
We have compared the spectra calculated within(bizesig hydrodynamic and various extended basis sets of
dynamical variables and with results obtained directly from the computer simulation. Within this formalism we
were able to obtain “fast sound” type modes using an extended hydrodynamic set of seven dynamical
variables. A detailed analysis of the contributions of the different spectra of collective modes to the partial
dynamical structure factors showed that these “fast sound” type excitations appear due to the dynamics of the
lighter He particles in the mixtur¢S1063-651X97)00509-9

PACS numbds): 51.30:+i, 64.75+9g

[. INTRODUCTION ties in a wide range of wave numbers and frequencies, start-
ing from the hydrodynamic regime up to the Gaussian-like
During the last decade essential progress in understandinggion. Within this framework, time-correlation functions
the dynamical properties of binary systems has beegan be written as a weighted sum of partial terms, each of
achieved 1-6]. The theoretical and experimental investiga-them being associated with a specific generalized collective
tions showed that the dynamic structure factS(k,o) of = mode and can be characterized via the corresponding eigen-
liquid water[1], liquid Li4Pb[2], and of gas mixtures such vector and eigenvalue of so-called generalized operators of
as He-N¢[3,4] or He-Ar [5,6] display a behavior which can evolution (see[9,10]). Some of the generalized collective
be explained in terms of two pairs of propagating modesmodes correspond in the hydrodynamic limit to the well-
namely so-called “slow” and “fast sound” modes. The known hydrodynamic excitations. The other collective
“slow sound” excitations(or simply sound excitationsare  modes with higher eigenvalues are called kinetic modes and
characterized by a linear dispersion relation in the hydrodyhave finite damping coefficients in the hydrodynamic region.
namic region of wave vectofsand frequencie®, while the It is important to note that this approach is based on an
high-frequency propagating excitationer “fast sound” extendedset of dynamic variables which contains, in addi-
modesg appear and can be observed for wave numlers tion to the conserved variables, their higher-order time de-
beyond the hydrodynamic region. For the case of liquid wativatives. In general, the required number of the generalized
ter [1] the dispersion relations for the propagating longitudi-collective modesor the dynamic variableswhich should be
nal (L) and transverseT) modes have been obtained by taken into account, depends on the considered range in the
fitting the current-current correlation functio®“ " (k, w) (k,w) space; this will be demonstrated in this contribution.
which were calculated in molecular dynami@®dD) simula- The parameter-free generalized collective mode approach,
tions: in both cases the excitation spectra contained highbased on the so-called Markovian approximation for the
frequency modes. For the He-Ne mixture a different ap-higher-order memory functions, has been suggested in Ref.
proach has been used [iB]: Here a simple kinetic model, [10]: There the five- and seven-variable description of the
developed within the generalized collective mode approackongitudinal fluctuations for a pure Lennard-Jones liquid has
[7—9] has been proposed; in this model the dynamic structurbeen studied. The extension of the formalism to a nine-
factor S(k,w) is a sum of four Lorentzians, where the pa- variable description has been presentefilij. The calcula-
rameters have been calculatg] using a fitting procedure tion of the time-correlation functions for a Lennard-Jones
for theexperimentalalues ofS(k, w) of a dense gas mixture fluid [12] showed that in a wide range &f and w a very
of HegesNegss. These results were obtained within the satisfactory agreement of the theory with MD data can be
five-mode description of the generalized modes approachbserved already within the lower-order approximations, i.e.,
where the model contained several fitting parameters. starting from the five-variable description. Similar results
This contribution is dedicated to an application of the ap-have been found for the dynamic correlation functions of
proach of generalized collective modéRefs.[7-9]) to a  liquid Cs near the melting poift.3].
binary system. In contrast t¢3] our calculations are One of the attractive features of the generalized mode
parameter-free; the only inputs required are the static correapproach is that it makes it possible to describe propagating
lation functions and so-called correlation times determined irkinetic modes which have been observed in some cases in
MD simulations. This method, which makes investigationsMD or scattering experiments. For instance, it was shown
of time-correlation functions of fluids possible, representswith this method for the transverse current-current correla-
nowadays a modern and powerful tool: it allows one to ob-ion function[10—12, that shear waves are in fact propagat-
tain the self-consistent description of the dynamical propering kinetic modes. The same conclusion can be drawn about
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fast sound modes in the case of binary mixtUi@s A(r ) =ny(r, 1)+ Ry(r )
This work is an application of thparameter-freegener-
alized collective modes approach to a binary mixture. We
concentrate our attention on the study of two main problems:
(i) to calculate the collective mode spectrum of aglge
Neg 35 mixture and to investigate the dependence of the re-
sults on the choice of the set of dynamical variabl@sg;to
determine the main physical mechanism which forms the fasé

Ir,H)=35(r,H)+3x(r 1), (6)

e(r,t)=ey(r,t)+eyr,t).

For an isolated binary system the partial number densities
f particles, the density of total momentum, and the density
f total energy are conserved quantities. Thus these four mi-
roscopic dynamical variables form the so-called hydrody-

(k.1),

sound excitations and to study those conditions under whic
such modes may be observed in the dynamic structure facc
tors.
The paper is organized as follows: Section Il outlines thg@mic setA"
key ideas of the generalized collective modes approach for - ~ A -

the case of a binary mixture; in Sec. lll we present results of AH(k,t)={A;'(k,t)}={nl(k,t),nz(k,t),J(k,t),e(k,t)},

a MD simulation for the static correlation functions and the ()
generalized thermodynamic quantities of a dense gas mixtu
HepesNeg 35 at a temperature 39.3 K; the results for the
spectra obtained within the generalized collective modes ap- 1N

proach and the dynamical structure factors as well as the ﬁ|(k,t)=—2 ex;{ik-r!(t)], (8
discussion of the results are given in Sec. IV. The paper is Ni=1

concluded by a summary.

Where the Fourier transformpé;'(k,t) are defined as follows:

I(k,t)=Jy(k,t) +3a(k,1), ©)
Il. THEORETICAL FRAMEWORK R R R
. . . . - = +
Let us consider a binary mixture in a volundecontaining e(k=eylk+ex k), (10
N, particles of massn; andN, particles of massn,. Hence  gpg
N;+N,=N is a total number of particles and
N
A 1 !
c1=N3i/N, ¢,=Ny/N=1-¢, 1) Ji(k,t)= Tn”"z vi(texdik-ri(t)], (11)
=1
are the concentrations of the components “1” and “2” in
the mixture. N
We now introduce the partial operators of particles of e|(k t)=— 2 ei(t)exp[ik-r!(t)]. (12

specied (I=1,2); for a binary mixture these operators are Ni=

the partial number densities . . . .
P For the study of the dynamical properties of a binary mixture

| the hydrodynamic set of dynamical variabl@$ should be

nrt)=—> 8r—rlt)), (2)  considered as the smallest and the basic one: With these
Ni=1 functions we can describe the behavior of the system cor-

rectly in the hydrodynamic region df and », where the

the partial densities of momenta processes on a slower time scale are dominant. For interme-

N, diate values ok and w we have to take into account those
J(rH=—m>, Vi) 8(r—rl(t)), (3)  processes wh!ch are re_alized ona fagter time scale: They can
IN = now be described within the generalized mode approach by
) N ) systematically extending the basis §Btand by considering
and the partial densities of energies extendedsets of dynamic variables which include variables
| responsible for the processes on this time level. To this pur-
é|(f t)= iz el(t)s(r—rl(1)) 4) pose, one may—for example—include in addition to the con-

served quantities also their time derivatives, as has been
demonstrated for a simple fluid0].

where In order to work out the general formalismdependent
5 2 N from the number of dynamic variables to be considgrésd
el(t)= m|[v(t)] E E z Irlt) rl’(t)|) us define the square matrix of time-correlation functions
' 2 ~ &~ i FO(k,t) using a set of M dynamical variables

B {Ai(k1).AxK 1Y), ... Au(k,D)}. The elements ] (k,t) of
this matrix are given by the correlation functions of two

[ | - . .
r;(t) andv;(t) denote the position and the velocity of particle dynamical variabled(kt) andA, (k,t) as follows:

i of specied at timet, and®,,,(r) is a two-body interaction
poter_mal betvyeen a particle of speciesand a_lApartche of Fioj(k t)z(A-(k,O)A*(k,t)) K+0. (13)
specied’ at distancea . The total number density(r,t), the

total momentumi(r,t), and the total energg(r,t) are sim- The asterisk denotes complex conjugation and the angular
ply defined as the sum of the relevant partial operators:  brackets denote the equilibrium ensemble average.
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Within the Mori-Zwanzig formalism it is now straightfor- Eg. (16) can be expressed as a weighted sum dweerms,
ward to write down the generalized Langevin equation forwhere each term is characterized by the corresponding eigen-
the matrixF°(k,t) [14,15 defined above: valuez®(k). The eigenvalue&z®(k)} represent the spectrum

of collective modes of the system defined for the set
ﬁFO(k,t)—iﬂ(k)Fo(k,t)Jrf Mk, 7)Fok t—ndr=0,  {AulKD),Ax(K1), ... Au(k,D)}.
at 0 At this point we have to emphasize that the theoretical
(14)  approach described above does not contain any adjustable or
fitting parameters. Just the Markovian approximation has
been assumed, which enables us to obtain the matrix equa-
tion (16). As will be seen below, all the elements of the
generalized hydrodynamic matrix k) can be expressed via
the static correlation functions and the so-called correlation
times (both are functions ok only) which, in turn, may be
calculated directly in a MD simulation.

In particular, it must be emphasized that the matrix equa-
tion (15) is exactfor any set of dynamic variables. Thap-
proximateequation(16) is derived by applying the Markov-
ian approximation to Eq(15); hence the results obtained
from Eq. (16) will depend on the chosen set of variables.

. . N e Thus the study of the dynamic properties of a binary mix-
\(/}/Qf (rjee;tgﬁsgsegggl]l)zed hydrodynamic matrik) is given by ture within the generalized mode approach can be divided
into the following steps(i) the choice of the appropriate set
- i v — 0 = -1 of dynamical variables; this depends on the concrete physical
T(o=-12(k + MO =F(kOIF (kO] (17 situation considered hereii.e., for instance, the range in
(k,w) spacg; (ii) the calculations of all the required matrix
elements ofT (k); (iii) the solution of Eq(16) and calcula-
tion of the collective modes spectrum and the time-
correlation functions. Beyond that, it can be shoMd,20
that the generalized transport coefficients of the system may

whereiQ(k) andM(k,7) are the frequency matrix and the
matrix of the memory functions, respectively. This matrix
equation can be rewritten in Laplace space as follows:

[zl —iQ(K)+ M (k,z)]FO(k,z) = F°(k,0). (15

Using the Markovian approximatiofdenoted by an\1) for
the memory functions, i.eli(k,z)=M(k,0), we obtain the
equation

[zl +T(k)JFM(k,z) =F°(k,t=0), (16)

| is the unit matrix, and="!(k,z) denotes the matrix of
Laplace transforms of time-correlation functions within the
Markovian approximation for the memory functions. Using
Eq. (16) it is easy to prove the relations

o “ also be found within the formalism of the generalized collec-
fo FM(k,t)dt= fo F(kt)dt, (18 tive modes.
FM(k,t=0)=F°(k,t=0), (19 lll. GENERALIZED COLLECTIVE MODES APPROACH

FOR VARIOUS SETS OF DYNAMICAL VARIABLES
which are very important for the sum rules of the time-

correlation functiong(k,t) (see[12]) We would like to emphasize that the starting point for our
ij ) . . . . . .
Introducing the eigenvectops, , and the eigenvalues, study is the hydrodynamic basis g&9, which consists of
of the matrixT(k) (j=1,... M Jémda=1 M) conserved variables. It is well know(see, for instance,

[14,15) that one can correctly reproduce the behavior of the
M hydrodynamic time correlation functions for small values of
2 Tij(KXj o=2(K) X o, 1=1,... M (20 k and w in the Markovian approximation for the memory
=1 functions using the hydrodynamic variables. In such a case
one should expect to find among the hydrodynamic longitu-

we can write the solution of the matrix equati@t6) in the dinal collective modes two propagating sound modes and

form two purely diffusive modes due to the heat and the concen-
M Ge(k) tration fluctuations. In & and w rangebeyondthe hydrody-

Eﬁ"(k,z)= 2 4 (22) namic regime we have to take into account memory effects

=12+ 2Z4(K) in a more explicit form, i.e., where the dependence of the

memory functions on wave number and frequency must be

where the weight coefficiensjj(k) are defined by included. This may be achieved in two way®:using some

M higher-order approximations for the hydrodynamic memory
G2 (K)= X X AFO(K,0). 22 functions, or(ii) applying the Markovian approximation to
ik 2‘1 Xai Fij (K0 22 the higher-order memory functions defined on an extended

set of dynamic variables. We shall follow in the next consid-

In time-space the solutiof21) has the form eration to the second way.
M One of the most systematic ways to extend the hydrody-
M _ @ B namic set of dynamic variabldgg) follows from the projec-
Fi (k’t)_gl Gij(kyexp —z, (Kt} 23 tion operator techniqugl5,10, where a dissipation of the

dynamic variables is described mainly via the dynamics of
Hence we see from Ed23) that the time-correlation func- their time derivatives. Hence, we shall consider below the
tionsF;;(k,t) calculated in the Markovian approximation via scheme when the extended set of dynamic variables
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includes—in addition to the hydrodynamic variables—alsothe seven-variable set which we shall call the extended hy-

the (first) time derivatives of these variables. drodynamic seAEH(k,t) labeled by EH,
A. Hydrodynamic set of dynamic variables AEH(Kkt) Z{AEH(k,t)}
Within the hydrodynamic set of dynamic variablgs for :{ﬁl(k 1) ﬁz(k 1) jl(k t) 32(k )

the longitudinal fluctuations we have to deal with x4
matrix FO(k,t). It can be shown that in the static lintit=0
the number of the nonzero elements Fff(k) =F°(k,0) is
equal to seven, so th&°(k) is a Hermitian matrix and has
the form

xe(k, 1), 30k, 1), 8(k,1)}, (30)

introducing the new operators
fnlnl fnlnz 0 fnle j(k,t)=jl(k,t)+jz(k,t), (31

fon, fogn, 0 foe e(k,t)=&y(k,t) + (k). (32)
Fo(k)= . (24)

0 o %y o0 : . : 5
3 The microscopic expressions for the operatdik,t) and

fnle fnze 0 fee e(k,t) follow directly from Egs.(3) and(4),
N

Since the system is isotropic we have assuiked be par- A _ ' | . | |
allel to thez axis; taking into account the relation ditk,H= J_N.Zl mi{a(t) +ilk-vi(DIv(D}

on(kt) ik xexgdik-ri(t)], 1=1,2 (33

T_ﬁJl (k,t), 1=1,2 (25

. 1 N

and using some additional properties of the time-correlation e(k,t)= \/_ngl {ei() +i[k-vi(t)]ei(t)}
functions[9,10], the matrixF°(k,z=0) can be written in the
form xexdik-ri(H)], 1=1,2 (34)

wherea|(t) denotes the acceleration of particlef species.
We note that using Eq$33) and(34) one may directly cal-
culate the corresponding correlation functions of the vari-
o st i . ables(31) and(32) in a MD experimentas has been done
ninp'niny  “npnyinon, E¢nn nye’nye for a Lennard-Jones fluid iflLQ]).
EO(k,0) = In this contribution we shall consider in addition also

' i i i some other extended sets of dynamic variables in order to
E¢”“ E¢nn 0 E¢ne investigate the dependence of the results for the collective

modes spectrum on the choice of dynamic variables. In Refs.

[3,4] the following five-variable set has been used:

i
Tnlnlfnlnl Tnanfnln2 E¢”n Tnlefnle

i
Tn,efne Tnefne — Teel ” R
1 1 2 2 k d’ne ee'ee ASA(k,t):{AiA(k,t)}
(26)
Where :{nl(klt)!nz(k!t)!Jl(klt)v‘]z(k!t)!e(klt)}
(35)
Dnn(K) = mlfnlnl(k)+ mzfnlnz( K), (27) . . . .
In contrast to Eq(7) this set of variables includes the partial
BrsK) =My f, o(K)+myf o(K), (28)  currents; andJ, instead of the total curredt By analogy,
1 2

we may consider another five-variable set where the partial

and the correlation times; (k) are defined by the expression densities of energieélA ande, are included instead of the
density of total energg, namely,

1 o)
miy(k)= F3(k,0 fo Fij(ktdt. (29 A%B(k,1) ={A%(k,1)}

={ny(k,1),Na(k,t),d(k,t),e1(k,1),e2(k, 1)}

B. The extended sets of dynamic variables (36)
The simplest way to extend the hydrodynamic set of dy-
namic variableg?) is to include in addition to the hydrody- As an extention of sgB6) one may also introduce the seven-

namic variables their first time derivatives. Thus one obtainyariable set of dynamic variables in the form



56 GENERALIZED COLLECTIVE MODES IN A BINARY ... 2907

the equilibrium state over a macroscopic time of 1200 ps
(240 000 time stepexcept for the smallest value, where it
has been extended over 2400(80 000 time stepsEvery
sixth configuration was taken into account for the computa-
tion of the static equilibrium averages. The time correlation
functions were calculated by shifting time origins
(Aty=6At) on a grid of 2000 points with a step size ok &
Additional averages for the correlation functions have been
performed over allN, possible vectorsk (with |k|=Kk),
which are compatible with the periodic boundary conditions.
We have considered 17 wave numbers in the range from

0.2 ' ' ' ' ' k=Kpin=0.175 A~ to k=25k,,,. Note that the first maxi-
0 ! ? k?,:\) 4 5 6 mum of the total static structure factor is locatedkgt2.15
AL

FIG. 1. Neutron-weighted total static structure facs(k) for
the He g5 Neg 35 mixture investigated in this study. Solid line—

integral-equation approach; diamonds—MD data for a 2048 particle ] ]
ensemble; dots—experimental neutron diffraction daja Two pilot calculations have been performed to check the

reliability of the calculation of the static averages obtained
A78(k,t) = [ATE(K 1)} directly in the MD simulation for the smaller ensemi¢&64
' a ™ particleg: we compare these data with results for a larger
A ~ A - ensemble(2048 particles and with data obtained in a very
{na(k,0),nz(k, 1), J(k, 1), ea(k,1), accurate integral-equation approach. This integral-equation
approach has a modified-hypernetted-chain-type closure re-
lation and is based on the universality hypothesis of the
_ _ N - bridge functionalfor details we refer the reader [48,19).
We see in Eq(37) that in addition toA>"(k,t) the set of | Fig. 1 we show the total neutron-weighted structure factor
variablesA"B(k,t) includes the first time derivatives dfand

e. In this sense, the extended hydrodynamic ABF(k,t) ‘> ey -
may also be considered as an extension of the five-variablétot(K) =01 “C1Sy1(k) +2b7 b3 y€1¢;5S;5(K) + b3 “C2S(k),

setASA(k,t). It is worth noting that the extended hydrody- (38)
namic set(30) may be consistently introduced through the
time derivatives of the hydrodynamic variabl@gs.

One of the main goals of this contribution is to find out
what different scenarideorresponding to different ranges in
the (k,w) plang can be described by using various sets of b* = by =12 (39)
dynamical variables discussed above; in particular, we would ' Jeb?+c b2’ '
like to study propagating modes in the collective mode spec-

tra in order to find out under which conditions the fast soundyng thes, . (k)=f,, ,,(k)/\/c/c,. are the partial static struc-
excitations can be observed in the dynamic structure factorg, - ¢ os whiclﬁ lhave been calculated as Fourier trans-

B. Static properties

% &,(k,1),J(K,1),8(k, )} 37)

whereb? andb3 are the normalized neutron amplitudes

IV. RESULTS AND DISCUSSION S (), S k), Sxe (k)

A. Molecular dynamics simulations 19 ' T T T

We performed MD simulations for a gas mixture of
Heg gsNeg 35 at a number densitp=0.0186 A2 and at a
temperatureT=39.3 K, considering a system of 864 par- 0.8
ticles interacting through Aziz potentialg,,(r) [16,17] at 0.6
constant volumeV/=L23. The potentials were calculated in
tabular form on a grid with a mesh size of 0.04 A. With this
kind of interatomic potentials we found the static and dy- o2
namic properties of the He-Ne mixture to be in a good agree-
ment with experimental data].

The equations of motion were integrated by means of a -02 . . . '

fourth-order predictor-corrector Gear algorithm with time in- 0 ! Py 4 5

crement ofAt=5X10"*°s. The initial configuration of par- FIG. 2. Bhatia-Thornton static structure fact@&gy(k), Syc(k),
ticles was a face-centered cubic lattice, and the initial VelOCiandSCC(k) for the Hey g Neg 35 Mixture investigated in this study:
ties were randomly distributed according to a Maxwellianthe results obtained by the integral-equation approach are shown by
distribution. The melting of the initial configuration and the solid curves; MD data for an 864 particle ensemble are represented
following thermalization to the desired temperature werepy symbols [diamonds—Sy\(k); crosses—Sqc(k); boxes—
performed in 15 000 time steps. The system was observed iB,c(k)].

1.0

0.4

0.0
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forms of the MD partial pair correlation functions and/or Sun(K) = fan(K), (40)
from the data obtained via the integral-equation method. The

comparison with the experimental resUl® of neutron dif-

fraction experiments on HgsNeg 35is shown in Fig. 1 and Snc(k)= f”l“(k)_clf”“(k)'
one may see that the position and the magnitude of the first

peak are in good agreement with the experimental data.

Hence we may conclude that the results of two pilot calcu- - _ 2

lations (Fig. 1 and the upper curve in Fig) Performed for Scc(K) = fn,(K) = 2¢:fn n(K) +cifna(k).  (42)

the 864 and 2048 particle ensembles are in good agreement

and correlate well with the experimental data and the results

of the integral-equation method. It is worth noting that the Using these definitions th8yy(k), Syc(k), and Scc(k)
specific behavior of the static structure factor observed in théend for largek to 1, 0, andc,c,, respectively. Results for
range of smalk values is typical for a system which is close Syn(K), Syc(K), and Scc(k) are shown in Fig. 2 by dia-

to the demixing transition. monds, boxes, and crosses, respectively.

All the static correlation functions required for the calcu-  The generalized thermodynamic quantities as functions of
lation of the generalized hydrodynamic matf k) have Kk investigated in this study are the generalized isothermal
been obtained directly in MD simulations. The correlationcompressibility«t(k), the generalized second derivatives of
times 7;; have been calculated directly via E@9). In this  the Gibbs potentia{see[21]) or so-calledZ factors[Zp(k)
section we shall present results for the static structure factognd Zy(k)], the generalized N—C” dilatation §(k) (see
and the generalized thermodynamic quantifi@sfined be- [21]), the generalized thermal expansion coefficierk),
low) which are expressed via static correlation functions andhe generalized specific heat at constant vol@yék), and
tend to the well-known thermodynamic expressions wherthe generalized ratio of specific heaték) at constant vol-
k—0. ume and constant pressure; they are plotted in Fig. 3. The

The Bhatia-Thornton structure factors can be expressedosed expressions for these quantities have been derived
via the static correlation functions calculated directly in MD [20] on the basis of the thermodynamic theory of fluctuations

(41

simulations[20-23, and can be written as followskg is the Boltzmann constant
o(k) Zp(k)/ kBT, Zy (k)/kpT
L T T T T > T T T T ] 5 T T ®®kp T T T ] T
1.2 r o (a) 7 ®$ 4>4>® S > o 3
Lok o o 3 ik g (b)
r o < - - " _
08 - 3| + 4
B o ] ~HO .
0.6 i
:%0 <><> _ 2 B -
04 ? S 1 ! 1 ! ! | ! 1 L 1 1 | 1
0 1 2 3 4 0 1 2 3 4
k(A1) k(A=Y
5(k) a(k)T
02 T bo T T T T T T T T T T T T T T
ol o© o o 7 12 ° {d) 4
or o <><><> < 3 .o o E
02f o - 10 °© o d
- B - o < < .
04r o ] 0.8 - 000 §
06 | . T O 00 7
1 1 L 1 I 1 ! 1 0.6 LY 1 1 I L 1 1
0 1 3 4 0 1 2 3 4
k(A™Y k(A1)
, OCv(k)/kB (k)
. T T T T T T T T T T T T T T T
I © 241 ®
1.9 _0 - 22 Lo -
18+ < i 20 F .
Y N s F < —
e © o d L o ]
i N PR o Oy 16 - 00 <><><> o o o 3
16 ) L OO0 L ! ! ! 1.4 L | PO ! ! !
0 1 2 3 4 0 1 2 3 4
k(A k(A1)

FIG. 3. Generalized thermodynamic quantities for the, kieNe, 55 mixture atT=39.3 K: (a) generalized compressibilitg(k); (b)
generalized factorg, (k) (+) andZp(k) (O); (c) generalizedN — C dilatation 8(k); (d) generalized linear expansion coefficier(tk); (e)
generalized specific heat at constant voluthgk) (the asterisk fok=0 points at MD value folCy, calculated via temperature fluctuation
in the MD simulation; (f) generalized ratio of specific heajgk).
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fnn( k)?nlnl(k)
Sce(k)

N
0(k): kaTKT(k): and

N
||m 0(|() = _kBTKT
k—0 v

(43

for the generalized compressibility;(k) [see Fig. 8],
where

1/ oV
KTI—v<—P) (44)
J T.N,N;
and
- frn(K)
fnlnl(k):fnlnl(k)_ fnn(k) ’ (45)
Zp(K) LI (k) keT d
==, == , an
P Seclk) 7Y Fogn, (K)
lim Zp(k) L 7c (46)
im == —5
k—0 i N &C% PTN

for the generalize&p(k) andZ(k) factors[see Fig. &)],
whereG is the Gibbs potential;

Suc(k) VY,
—W and k[l'gl5(k)— V;

o(k)= (47)

for the generalizedN — C dilatation[see Fig. &)];

KT(k)?(L)
ikkgT ~ Je

N
a(k)T= v (k) and

1/0V
lima(k)=—=| —= 48
klino ) V<3T “9

P.N;.N,

for the generalized thermal expansion coefficienfk) [see
Fig. 3(d)], where

Je

faek) TreK) Sc(k)
Fan(K) F o (k) Fan(k)
(49

T 0=15 (- ikkBT(

and

Fon(K)

Toye(k)=fn,e(k) = fre )

2 (k) ek |
oK) T (0 an

(50

1
K)y= ——| fodk
Cu(k) kBTz( ed k)

||m Cv(k) = CV,N,Nl
k—0

(51)

2909

for the generalized specific heat at constant vol(isee Fig.
3@
[a(K)T]® kg

Y= S

(52

for the generalized ratio of specific hefsge Fig. &)]. For
the k dependence of these quantities one may observe the
following.

(i) The reduced generalized compressibiliigk) [Fig.
3(a)] differs from Syn(k) (plotted in Fig. 2 in the region
k<0.7 A~1. Note that

I N 1<av)
Im N = B KT, =— | = y
o Y SRV

where k1, is a compressibility given inR,T,N,u) en-
semble.

(i) The curves ofZp(k) andZy(k) [Fig. 3(b)] coincide
for k>1.5 A~* but differ in the region of smak.

(iii) The generalizedN — C dilatation[Fig. 3(c)] becomes
negative fork—0 because the particles of the first species
(Ne) are heavier.

(iv) The generalized thermal expansion coefficigfig.
3(d)] decreases rapidly for small values lofk<0.5 A~ %)
as the wave number increases, while for latggalues it has
a maximum at the position of the main peakSxfy(k). Such
a behavior can also be observed in pure liquibt®,13.

(v) The extrapolated value @&(k) for k—0 [Fig. 3(e)]
is in good agreement with the value obtained from MD data
via the fluctuation formuldmarked by an asterigk

(vi) In the hydrodynamic region the generalized ratio of
specific heatsy(k) is rapidly decreasing as a function lof

We note the following.

(1) The difference between the functiofigk) andSyn(k)
as well as the functiongp(k) andZ,(k) is due to the dif-
ference between the fluctuation formulas of the same quan-
tity defined in various ensembles. This difference is propor-

tional to the ratioTnlnl(k)/Scc(k) in both cases and tends to

zero ask becomes larger.

(2) The coupling of thermal and viscous processes is
mainly described by the generalized thermal expansion coef-
ficient a(k). Comparing the behavior af(k) for a mixture
Heg g5Neg 35 and for a simple fluidsee, e.9.[10,13) in the
range ofk smaller thank, (see above one may conclude
that the energy fluctuations play an important role for the
system considered here.

(3) Using the extrapolated values ¢fk) and (k) for
k—0, we can calculate the adiabatic velocity of sojiad]
defined by the expression

( Y ) 1/2
Cs= s

wherep is the mass density. In such a manf@nd depend-
ing on the extrapolation procedynee have found values for

¢s which are within the range of 300—350 m/s. As will be
seen below these values correlate well with the results ob-
tained from the study of the spectra of the generalized col-
lective modes in the hydrodynamic limit. Using E§3) for

the values ofy(k) and x7(k) taken, respectively, at the
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FIG. 4. Fourth frequency moments of the partial dynamical Py (B, 1)/ v/eier
structure factors divided by® as functions ofk for the Heygs 08
Ney 35 Mixture investigated in this study: solid lines—calculated
using the partial radial distribution functions; symbols—calculated
directly in the MD simulation as static averagé%j)lr (crosses—

He-He; boxes—He-Ne; diamonds—Ne\Ne

0.6 B
: k=0.857A-1
0.4

0.2

smallestk (i.e., kyin=0.1748 A~1) we obtainc,=376.9 m/s
which is close to the value 362 m/s obtained from a phenom-
enological equation of stateee references i18]). However,
it should be noted that the vallg,, lies in factoutsidethe :
hydrodynamic region of wave numbers as will be seen from 54 | ! ! ! . . . . .
the spectra of the generalized collective modes: At this 0 04 08 . 1.2 1.6 2.0
point already new propagatirkjnetic modes appear which (ps)
can be identified as fast sound modes. FIG. 5. Partial density-density correlation functions for two
fixed values ofk for the He, g5 Neg 35 mixture investigated in this
C. Dynamical properties study: open circles—MD data; dotted lines—the results obtained

. . . for the hydrodynamic set of variabl€3); solid lines—the results
In this section we present the numerical results for thggr the extended hydrodynamic set of variabi@é).

dynamic structure factors and the spectra of the longitudinal
o e e s et 1163 Wi s e it neralzd e -
quantities which form the generalized hydrodynamic matrixProach for the hydrodynamioA™ (k) —dotted curv¢.and ex-
have been obtained directly in a MD experiment, so thatended hydrodynami¢ AE"(k)—solid curvd sets of dy-
neither adjustable nor fitting parameters were required onamic variables. The results are given at two wave numbers
used. To illustrate the internal consistency of our approact, namely,k=0.350 A~! andk=0.857 A~* (both of them

we plotted in Fig. 4 thé dependence of the fourth frequency are much smaller thaky). In Figs. 5 it is clearly seen that

momentSw'J'(k) of the partial dynamic structure factors di- the results obtained within the extended hydrodynamic set
vided byk?: We display the values calculated directly in the Provide a much better agreement with MD data compared to
MD simulation as the static averagé%-) (11" =He, No the results for the hydrodynamic sé€f); the difference
Jpt A ' becomes—as expected—more pronounced for larger values
I p p g

and the valuesaz)[{'/k2 calculated via the partial radial distri- of k.
bution functions and the derivatives of interatomic potentials The spectra of the generalized collective modes obtained
on the basis of well-known expressiofsee, e.g.[14]). One for the hydrodynamiq7) and the extended hydrodynamic
may see in Fig. 4 that the results are in very good agreement30) sets of dynamic variables are shown in Figs. 6. The
In addition we point out that, for example, the time- eigenvaluesz, are given in reduced units, using the time
correlation functionF ,,(k,t), calculated on the basis of the scaler,,
extended hydrodynamic s€30), gives the exact values for
the frequency moments up to fourth order, due to the fact ;= 1 Jegmy+com,
that the first time derivatives of the hydrodynamic variables 7 i kgT '
are taken into account explicitly in this catee alsd12]).
Hence we expect that the short-time behavior of the time- R
correlation functions will be described more precisely withinAs expected, we found for the hydrodynamic &t (k)
the extended hydrodynamic set. [Figs. 6a) and &b)] four generalized modes, which can be

In Figs. 5 we compare the partial density-density time-considered as the extension of usual hydrodynamic modes
correlation functions calculated in the MD simulatiG@pen  known in the literaturdsee, e.g.[21]). In the hydrodynamic

0.0 e e 7:‘, S OO=0~-0

-0.2
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FIG. 6. Spectra of eigenvalues obtained for the hydrodynamic set of vari@bles, (b) and the extended hydrodynamic set of variables
(30) (c), (d) for the He, g5-Neg 35 mixture investigated in this study. The linear dispersion of sound eth362 m/s(see[3]) is plotted by
a dotted line. The imaginarga), (c) and real(b), (d) parts of the eigenvalues are shown by symlpstaind modes by boxes; concentration
modes(b), (d) by triangles; fast sound modés), (d) by diamonds; the pair of propagating modey (d), which transform at small values
of k into two purely diffusive modes by and +]. The time scale unit, (see textis given by 3.109 ps.

limit k—0 these modes aré) two complex conjugated be) in addition to the previous resulf&gs. (54)—(56)] two
propagating modes which correspond to sound excitationselaxing kinetic modeg,, (k) andz,(k) [denoted by+ and

with the eigenvalues ¢ in Fig. 6(d)] with finite damping coefficients,
zg =Tk?=ick, (54) lim[Rez(k)]1=2,>0, lim[Rez(k)]=2z,>0.
k—0 k—0

wherecg andI™ are the velocity and damping coefficient of o _ _
the sound excitations, respectivel§i) two purely diffusive ~ The kinetic modes describe processes of a subsequent time
modes describing the concentratiar) @nd heat ) fluctua- ~ scale, i.e., faster processes in comparison with the hydrody-

tions namic ones.
In Fig. 6(d) we can see that for large values lofthere
zC:DCkZ, (55 exist one purely real relaxing mode, which may be consid-
ered as the extended concentration mdttengles, and
z,=Dpk?, (56) three pairs of complex conjugated propagating modes, one of

which corresponds to the generalized sound excitations

whereD. andD,, are the concentration damping coefficient (boxes. The other two pairs of propagating modes reduce to
and the heat diffusivity, respectively. Our estimates, obtaineg¢he modes with purely real eigenvalueskadecreases.
for knin Within the hydrodynamic s€f), give cs=286.7 m/s, (i) Fork=0.3 A~ the imaginary part of the eigenvalues
[=752x10"° m?/s, D.=0.80<10"® m?/s,  for the propagating kinetic moddslenoted byx in Fig.
Dp=4.37x10"% m?/s. Furthermore, it should be noted that 6(c)] becomes zero, and they degenerate for smaller values
one can also extract the transport coefficients using thef k into two relaxing modegdenoted byx and + in Fig.
known expressionf21], which relate the hydrodynamic ei- 6(d)], one of which is an extension of the heat mode. Note
genvalues to these transport coefficiefttee viscosity, the  that the dispersion of these modes kor0.3 A~ is always
concentration diffusion coefficierd, and the thermal con- pelow w4(k)=cgk [dotted line in Fig. &)].
ductivity «). (i) The third pair of propagating modéplotted by dia-

The spectra of the generalized collective modes calculateghondg with the largest real part of the eigenvalues behave
within the extended hydrodynamic s&E"(k) are shown in in the range of small and intermediate valuekafimilar to
Figs. €c) and €d). In this case we obtained seven eigenval-the fast sound modes found [8,4]. This means that the
uesz, which describe the time dependence of the sygiefm  dispersion of these modes,(k), is larger than the disper-
Eqg. (23)]. In the hydrodynamic limit, we findas it should sion of the sound modesg(k) for all the values ok con-
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sidered in the simulations; however, there is a clear tendency Im(za)7

that w, (k) tends to zero ak tends tok,, from above, so that 12 . . . T . E—
for k<ky these modes reduce to two relaxing kinetic modes wlk @ o i
with purely real eigenvaluefwhere the valuek, can be .o

defined by the equation,(ky) =0]. From Fig. c) one may 8r = . 7
estimate the value d, to bek,=0.1 A~*. Due to the finite 6 - -
size of our ensembléntroducing thusk,,;,) we are not able Al . -0 1
to give a more accurate result kg . Such properties are in D ° o
agreement with the conclusion given[isy. zr _.a'D o © ¢ N

We also list our estimates for the quantities which de- ok Lo ! ; ! !
scribe the behavior of the generalized hydrodynamic mode 0 0z 04 0-6k( AQ‘P) 10 12 14
ask tends to 0, obtained within the extended hydrodynamic
set (30 ¢=296.5 m/s, I'=9.11x108 m?s, Tm(ze) 7o
D.=0.81x10"8 m?/s,D,=4.59x 10 8 m?/s. These values 12 L LN At
correlate well with the estimates found for the hydrodynamic whk ® i
set of dynamic variables. -

Summarizing, one may conclude that the fast sound exci- 8r 0
tations which have been observed experimentgy3] in 6 o .
binary mixtures can be described within the generalized AL . o )
mode approach on the basis of the extended hydrodynamic 5 O o
setAEH(k). We add that a similar behavior of the propagat- 2r oo ]
ing kinetic modes has also been found for a Lennard-Jones 0 e 1 1 ! T N
fluid [11]. However, in the case of simple liquids the disper- 0 02 04 0'6k(A9'18) 1012 14
sion of the propagating kinetic modes was belew(k), so
that these modes were not directly visible in the dynamic Im(za)7
structure factor. 2 T T T T Tt

Therefore, in an effort to find more precisely the reasons a0 L (©) o h
under which conditions the fast sound solutions appear we
consider in the following also the other sets of dynamical 15 | .
variables discussed abojsee Eqs(35—(37)]. Such inves- o
tigations are also motivated by the fact that such a kind of 10 - . o]
solution has been found previousl§,4] within the variable E
set(35), using the seven-parameter fitting procedure for the or e o © © 1
elements of the generalized hydrodynamic matrix. 0 L o L C . ! ! !

Before analyzing the results we note that for any set of 0 02 o4 0'6k( Ag.ls) 10 12 14

dynamical variables which includes the conserved hydrody-
namic variables, the spectra of th? CO”eCtI.Ve mo_des must FIG. 7. Imaginary parts of the eigenvalues obtained for the vari-
describe correctly the hydrodynamic behavior. This means (A5 ASE and A of g . iabl Iya) f

that four of the eigenvalues should be hydrodynamic eigen(-)us € ’  an ot dynamic varnap'es, hame yf"‘ or
values[which, in the limitk— 0, describe two complex con- Eg. (35), (b) for Eq. (36), and(c) for Eq. (37). The dispersions of

va uisd cn, fi d o d itati dpt - sound and propagating kinetic modes are shown by boxes and dia-
Jugated propagating mo éso“'? excita iong and two ei- monds, respectively. The time scale unjtis given in the caption
genvalues should be purely diffusive oneee Eqs(54)— of Fig. 6.

(56)]. The other collective modes have to be kinetic ones

with finite damping coefficients dstends to O; they contrib- they are related to the kinetic propagating modes found for
ute only to the central peakkcated atw=0) of dynamical the extended hydrodynamic s¢tompare the low-lying
structure factors whek is small. curves in Fig. 7a) and Fig. &c)]. (ii) The imaginary parts of

The results for SpeCtra of the generalized collective mOdeﬁ1e eigenva|ues7 Ca|cu|ated for the é\éF(k) Where the par-
obtained within various sets of dynamic variabl®*(k), tial densities of the energies are taken into account, are
A5B(k), andAB(k) are shown in Fig. 7(i) In Fig. 7(a) the ~ shown in Fig. Tb). In the entire range df considered, we do
imaginary parts of the eigenvalues, calculated for the sefot find any other propagating modes at{akcept for sound
(35), are plotted. In this case and fkr-0.4 A~* we found  modes (plotted by boxeX. (iii) For the setA’®(k) such
two pairs of propagating modes and one mode with a purelynodes appear again far>0.2 A~* [see Fig. c)]. We em-
real eigenvalue: The first pair describes sound excitationgphasize that s€87) can be considered as an extension of set
the second pair of propagating modes decomposes into tw@6), so that we now might expect to obtain more accurate
relaxing modes whek is smaller than 0.4 A*: one of them  results for the low-lying collective modes. However, propa-
is the heat mode and the other one is a kinetic mode. Henagating kinetic modes, which could be identified as fast sound
the general behavior of solving the eigenvalue problem foexcitations, have not been found. Thus we concludeahbt
the setAS(k) is very similar to that found ifi3]. However, the extended hydrodynamic s&E"(k) of dynamical vari-

it is seen in Fig. 7a) that in contrast td3] these modes ables provides a way to describe fast sound modes
cannot be considered as fast sound excitations. More likely Let us consider now the results for the partial dynamical
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FIG. 8. Total neutron-weighted dynamic structure fact@®) for six different values ok obtained within the hydrodynamic sé€f)
(dotted curvel the extended hydrodynamic sg0) (solid curve$, and by numerical Fourier transformation of MD dd&tgpen circles
Arrows display values of the imaginary parts of eigenvalues for propagating modes obtained within the extended hydrody(@0hic set

structure factors. As follows from E¢23) we get where the coefficient§* are the corresponding linear com-
binations of theGp , ..
In Fig. 8 the total dynamic structure fact8y,(k,w) cal-
. (57 culated with the hydrodynamic sét’(k) and the extended

hydrodynamicAEH(k) sets are plotted for six different val-
ues ofk (dotted and solid curves, respectivel¥D data are
Using Egs.(38) and(57) one can calculate the total neutron- shown by open circles. The positions of the propagating
weighted dynamic structure fact&(k,w) for our system, modes found for the extended hydrodynamic set are shown
by arrows. We see that the results obtained within the seven-

K 1 O M Gﬁ|n|,(k)
Sele)== oo 1a1iotz(k)

M . variable approximation of the generalized collective mode
Sk w)ziR 3 g (58) approach agree well with MD data for all the considered
on ™ 7 lic1iwt+z(K)] values ofk. The hydrodynamic set gives results which agree
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) FIG. 11. Partial dynamic structure factors obtained for the ex-
FIG. 9. Second frequency momelt,(k) of the total dynamic  tended hydrodynamic s€B0) (solid curves. The dotted curves
factor (diamonds calculated in comparison with the theoretical ghow the partial dynamic structure factors if the contribution from

value (solid line). the fast sound like modes is neglected.

with computer simulation data only for smalls, which WOK) 1 (=

shows clearly that, ak is increased, the nonhydrodynamic M, (k)= 2 == | 02Sykw)dw,
effects become more important. One can see in Fig. 8 that for k2 k?J -

k=0.699 A~! andk=0.857 A~ the contributions from the

propagating kinetic modes, which may be identified as fast . :
sound modes, are visiblghe positions of fast sound excita- and the half-width at half heighby (k) are plotted as func-

tions are shown by arrows on the right-hand sidEor tions of k, respectively. V\_/ithin the _aCCl_Jracy_of_Z% the sec-
smaller wave numbersk&0.7 A~1) these modes can no ond frequenc_y momen(tdlam_onds in Fig. Pis in a good
longer be observed because the contributions from thggreement with _the theoretical valllasee[3]) shown. by a
kinetic modes in Eqs(57) and (58) are proportional tck? Solid line. 'In Fig. j.'o the hqlf-W|dth at_half he|ght of
and the damping coefficient is too large. On the other hancf“f’t(k.’w) (dlamqndss n ghe region of smalk values IS a
for k>0.9 A~ the fast sound modes are not visible either,.unc.tlon proportional tck Lasit SPOUId be. Two do.tted lines
due to the increasing damping coefficient. Still, one ma)/n F2|g. 10 are the funcnonﬁ)hk (upper dotted link and
conclude from the results in Fig. 8 that for large values of Dck ('OWef (_jotted ling, whereDy, an_dDC are t.he values of
the fast sound excitations should be taken into account for I}ﬁgrmodlffusmn(_%) and concentration d|ffu5|9(55) coef-
correct description of the dynamic structure factor: they im- icients, respectively. _In binary systems t_he wujth of the cen-
prove the accuracy in the range of intermediate values of tral_peak OfS(k, @) in the hydrodynamm region depend;
and o. on _mterplay between thermodiffusion and concentration dif-
In Figs. 9 and 10 the results for second frequency momer{fjs'on processes. Therefore for small valuek die function

M,(k) of the total dynamic structure factor calculated within wp (k) is in be_tweeq the dottgd CUrves. .
the extended hydrodynamic set, In order to investigate the influence of the high-frequency

propagating kinetic mode&ast soungl on the partial dy-
namical structure factors we display in Fig. 8} (k,)
wu(ps™") (I,I"’=He, N, using the extended hydrodynamic set

0 ' ' 3 ' ' ' - AEH(k). There the partial dynamic structure factors are plot-
- J ted fork=0.857 A%, i.e., fork values when the fast sound
s Duk* — Dek? = . modes could be clearly identified in the total dynamic struc-
ture factor(see above and Fig.)8We present results for
6 o ] S (k,w): the full line represents the sud7) containingall
0 terms, while the broken line shows data when the contribu-
4t : tion from the fast sound modes is neglected. It is obvious
o ,.5" < that the fast sound contribution affects mainly the dynamics
o L o <>._.- ° i of lighter He particles and has no visible effect on the dy-
DN <> namics of the heavier Ne particles. This is consistent with the
o Laaa- & . . . . . ‘ conclusion made previously in Ref,3].
0 0.5 1 1.5 2 2.5 3 3.5 4
kA

V. CONCLUSION
FIG. 10. Half-width at half height»,, (diamond$ calculated for

the total dynamic structure factor. The pure contributions from the  In the present paper, the generalized collective mode ap-
thermodiffusion and concentration diffusion terfsee Eq.(58)]  proach, extended to binary mixtures in the parameter-free
are plotted by upper and lower dotted lines, respectively. form, has been applied to study the dynamical properties of a



56 GENERALIZED COLLECTIVE MODES IN A BINARY ... 2915

Heg 65 Neo.ss mixture. In particular, the spectra of the gener- ot AEH gives results for the time-correlation functiofssich
alized collective modes have been studied for various sets ¢fs the dynamic structure factprahich are in good agree-
dynamical variables. Our main concern was to investigalgnant with MD data. In our study it has been found that the
the excitations of fast soundlike modes, described previouslyqsndition under which the fast sound excitations may be ob-
in [3,4]: We recall that such excitations have been obtainedgpeq depends on the ratio of the damping coefficients as a

in [3,4] using a seven-parameter fitting procedure for the sefnction ofk. From the physical point of view the fast sound

of variables(35). , modes are found to be closely connected with the dynamics
One of the most important aspects of our results is thafs the lighter component in a mixture.

from all the sets of dynamical variables considered in this  pased on the results given here, further time-correlation

study the appearance of fast sound modes can only be dyciions and generalized transport coefficients, such as the
scribed within theextended hydrodynamiget (30). For all  aneralized shear and bulk viscosities, the generalized ther-
the other sets we have not found modes which could b5 conductivity, and the generalized diffusion coefficient,

identified as fast sound modes. We recall that in contrast @, pe computed. It would also be interesting to investigate
the exactformalism[see Eq(15)], where all sets of dynami- o gpectra of generalized collective modes in higher ap-

cal variables are equivalent, the Markovian apprOXimatiO”proximations, taking into account second- and higher-order

which is the key point of the generalized mode approachime derivatives of the hydrodynamic variables, since it has
brings along that these sets are no !onger .equwalent. HOW;een shown for simple fluidl1,17 that in this way the
ever, as has been shown for pure liquids in REf2], by |5 lying eigenvalues can be reproduced with higher accu-

e;xtendin_g a set of dynami_cal _variables by including t_he"racy. We plan to present results of such a st(ektension to
time derivatives the following is observed: the short-time,qo binary caseelsewhere.

kinetic properties can be described more precisely and a ten-

dency for the convergence of the results for the collective

modes _spectra as we!l as a bette.r agreement _of the time- ACKNOWLEDGMENTS

correlation functions with MD data in the generalized mode

approach is observed. In contrast to the other sets considered The basic codes for MD simulations have been taken
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